Semantic Tuples for Evaluation of Image to Sentence Generation
نویسندگان
چکیده
The automatic generation of image captions has received considerable attention. The problem of evaluating caption generation systems, though, has not been that much explored. We propose a novel evaluation approach based on comparing the underlying visual semantics of the candidate and ground-truth captions. With this goal in mind we have defined a semantic representation for visually descriptive language and have augmented a subset of the Flickr-8K dataset with semantic annotations. Our evaluation metric (BAST) can be used not only to compare systems but also to do error analysis and get a better understanding of the type of mistakes a system does. To compute BAST we need to predict the semantic representation for the automatically generated captions. We use the Flickr-ST dataset to train classifiers that predict STs so that evaluation can be fully automated 1.
منابع مشابه
Improvement of generative adversarial networks for automatic text-to-image generation
This research is related to the use of deep learning tools and image processing technology in the automatic generation of images from text. Previous researches have used one sentence to produce images. In this research, a memory-based hierarchical model is presented that uses three different descriptions that are presented in the form of sentences to produce and improve the image. The proposed ...
متن کاملبرچسبزنی نقش معنایی جملات فارسی با رویکرد یادگیری مبتنی بر حافظه
Abstract Extracting semantic roles is one of the major steps in representing text meaning. It refers to finding the semantic relations between a predicate and syntactic constituents in a sentence. In this paper we present a semantic role labeling system for Persian, using memory-based learning model and standard features. Our proposed system implements a two-phase architecture to first identify...
متن کاملLearning Semantic Concepts and Order for Image and Sentence Matching
Image and sentence matching has made great progress recently, but it remains challenging due to the large visualsemantic discrepancy. This mainly arises from that the representation of pixel-level image usually lacks of high-level semantic information as in its matched sentence. In this work, we propose a semantic-enhanced image and sentence matching model, which can improve the image represent...
متن کاملSemiautomatic Image Retrieval Using the High Level Semantic Labels
Content-based image retrieval and text-based image retrieval are two fundamental approaches in the field of image retrieval. The challenges related to each of these approaches, guide the researchers to use combining approaches and semi-automatic retrieval using the user interaction in the retrieval cycle. Hence, in this paper, an image retrieval system is introduced that provided two kind of qu...
متن کاملSEIMCHA: a new semantic image CAPTCHA using geometric transformations
As protection of web applications are getting more and more important every day, CAPTCHAs are facing booming attention both by users and designers. Nowadays, it is well accepted that using visual concepts enhance security and usability of CAPTCHAs. There exist few major different ideas for designing image CAPTCHAs. Some methods apply a set of modifications such as rotations to the original imag...
متن کامل